Termination w.r.t. Q of the following Term Rewriting System could be proven:
Q restricted rewrite system:
The TRS R consists of the following rules:
-2(-2(neg1(x), neg1(x)), -2(neg1(y), neg1(y))) -> -2(-2(x, y), -2(x, y))
Q is empty.
↳ QTRS
↳ Non-Overlap Check
Q restricted rewrite system:
The TRS R consists of the following rules:
-2(-2(neg1(x), neg1(x)), -2(neg1(y), neg1(y))) -> -2(-2(x, y), -2(x, y))
Q is empty.
The TRS is non-overlapping. Hence, we can switch to innermost.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
Q restricted rewrite system:
The TRS R consists of the following rules:
-2(-2(neg1(x), neg1(x)), -2(neg1(y), neg1(y))) -> -2(-2(x, y), -2(x, y))
The set Q consists of the following terms:
-2(-2(neg1(x0), neg1(x0)), -2(neg1(x1), neg1(x1)))
Q DP problem:
The TRS P consists of the following rules:
-12(-2(neg1(x), neg1(x)), -2(neg1(y), neg1(y))) -> -12(-2(x, y), -2(x, y))
-12(-2(neg1(x), neg1(x)), -2(neg1(y), neg1(y))) -> -12(x, y)
The TRS R consists of the following rules:
-2(-2(neg1(x), neg1(x)), -2(neg1(y), neg1(y))) -> -2(-2(x, y), -2(x, y))
The set Q consists of the following terms:
-2(-2(neg1(x0), neg1(x0)), -2(neg1(x1), neg1(x1)))
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPAfsSolverProof
Q DP problem:
The TRS P consists of the following rules:
-12(-2(neg1(x), neg1(x)), -2(neg1(y), neg1(y))) -> -12(-2(x, y), -2(x, y))
-12(-2(neg1(x), neg1(x)), -2(neg1(y), neg1(y))) -> -12(x, y)
The TRS R consists of the following rules:
-2(-2(neg1(x), neg1(x)), -2(neg1(y), neg1(y))) -> -2(-2(x, y), -2(x, y))
The set Q consists of the following terms:
-2(-2(neg1(x0), neg1(x0)), -2(neg1(x1), neg1(x1)))
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
-12(-2(neg1(x), neg1(x)), -2(neg1(y), neg1(y))) -> -12(-2(x, y), -2(x, y))
-12(-2(neg1(x), neg1(x)), -2(neg1(y), neg1(y))) -> -12(x, y)
Used argument filtering: -12(x1, x2) = x2
-2(x1, x2) = x2
neg1(x1) = neg1(x1)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ PisEmptyProof
Q DP problem:
P is empty.
The TRS R consists of the following rules:
-2(-2(neg1(x), neg1(x)), -2(neg1(y), neg1(y))) -> -2(-2(x, y), -2(x, y))
The set Q consists of the following terms:
-2(-2(neg1(x0), neg1(x0)), -2(neg1(x1), neg1(x1)))
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.